If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-2Y^2-16Y-20
We move all terms to the left:
-(-2Y^2-16Y-20)=0
We get rid of parentheses
2Y^2+16Y+20=0
a = 2; b = 16; c = +20;
Δ = b2-4ac
Δ = 162-4·2·20
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{6}}{2*2}=\frac{-16-4\sqrt{6}}{4} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{6}}{2*2}=\frac{-16+4\sqrt{6}}{4} $
| 4x–24=20–x | | 3/7=x42 | | n-1=14 | | 25=46–3x | | 2/7=x27 | | -3x4(2x+3)=32 | | 144=3(5r+8) | | t/t-9=18 | | 10/13=x39 | | 6(2a+10)=6(a+5) | | 9+2x=5x-12 | | 200=2x^2=200 | | 4x+5x+6x=360° | | 2(4x-8)+9=6x | | -3=-a/2 | | 2k+5=85 | | 7d^2+d-7=0 | | 12x-2x=66=12x+38 | | 2=u/4 | | 13^x=80 | | 6(c-12)=0 | | 0=-2x^2-16x-20 | | 5v^2+v+7=0 | | W/7w=42 | | 8u^2=u | | 3=-8q^2 | | (X)=1.1z | | √79-5x=6x+4 | | z/4+3=-44 | | 124=2x | | 6^3=2y | | 124=2d |